Why Choose BONTAC?

Advantages of NMNH

NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service

Advantages of NADH

NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service

Advantages of NAD

NAD:  1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products

Advantages of MNM

NMN:  1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University

We Have The Best Solutions for Your Business

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.

As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.

In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.

Learn More

What users say about BONTAC

BONTAC is a reliable partner that we have been working with for many years. The purity of their coenzyme is very high. Their COA can achieve relatively high test results.

Front

I discovered BONTAC in 2014 because David's article in cell about NAD and NMN related showed that he used BONTAC's NMN for his experimental material. Then we found them in China. After so many years of cooperation, I think it is a very good company.

Hanks

I think green, healthy and high purity are the advantages of BONTAC's products compared with others. I still work with them to this day.

Phillip

In 2017, we chose BONTAC's coenzyme, during which our team encountered many technical problems and consulted their technical team, which were able to give us good solutions. Their products are shipped very fast and they work more efficiently.

Gobbs

Do you have any questions?

What is the mechanism of NADH powder of Action?

NADH is synthesized by the body and thus is not an essential nutrient. It does require the essential nutrient nicotinamide for its synthesis, and its role in energy production is certainly an essential one. In addition to its role in the mitochondrial electron transport chain, NADH is produced in the cytosol. The mitochondrial membrane is impermeable to NADH, and this permeability barrier effectively separates the cytoplasmic from the mitochondrial NADH pools. However, cytoplasmic NADH can be used for biologic energy production. This occurs when the malate-aspartate shuttle introduces reducing equivalents from NADH in the cytosol to the electron transport chain of the mitochondria. This shuttle mainly occurs in the liver and heart.

What are the challenges of marketing the NADH powder?

The action of supplemental NADH is unclear. Oral NADH supplementation has been used to combat simple fatigue as well as such mysterious and energy-sapping disorders as chronic fatigue syndrome and fibromyalgia. Researchers are also studying the value of NADH supplements for improving mental function in people with Alzheimer's disease, and minimizing physical disability and relieving depression in people with Parkinson's disease. Some healthy individuals also take NADH supplements orally to improve concentration and memory capacity, as well as to increase athletic endurance. However, to date there have been no published studies to indicate that using NADH is in any way effective or safe for these purposes

How to choose a real NADH powder material manufacturer?

First, inspect the factory. After some screening, NADH companies that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NADH powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NMN powder. If high purity NMN cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NADH powder produced by Bontac reach the purity of 99%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.

Our updates and blog posts

02 Apr

Unraveling Impacts of Ginsenoside Rg3 Treatment on IL-1β-induced Injury of NPCs

Introduction Intervertebral disc degeneration (IDD) is a frequently seen orthopedic disease, which is accompanied with excessive apoptosis of nucleus pulposus cells (NPCs) and degeneration of extracellular matrix (ECM), with main symptoms of pain and numbness in the waist, legs and feet, as well as inflammation on and around the surface of bone tissues. Strikingly, ginsenoside Rg3, the main active ingredient of ginseng, has been attested to exhibit anti-catabolic and anti-apoptotic effects in IL-1β-treated human NPCs and IDD rats by inactivating the p38 MAPK pathway. The risk factors for IDD IDD is generally associated with risk factors such as aging, excessive exercise, working environment, and genetics. As one ages, the amount of water in the body and in the intervertebral discs will be reduced accordingly. Intervertebral discs that lack moisture will lose their elastic function and become hard. Once there is any stimulation or pressure, the intervertebral disc may crack, leading to intervertebral disc injury. For instance, the mechanical trauma caused by excessive exercise and work may accelerate the fragility of disc and exacerbate IDD. Anti-catabolic and anti-apoptotic effects of ginsenoside Rg3 in IL-1β-treated human NPCs and IDD rats Ginsenoside Rg3 plays an anti-apoptotic role in IL-1β-treated human NPCs and IDD rats, as evidenced by the down-regulation of pro-apoptosis protein Bax and up-regulation of anti-apoptosis protein Bcl-2 in IL-1β-stimulated NPCs and IDD model rats. Besides, ginsenoside Rg3 represses ECM degradation in IL-1β-stimulated NPCs and intervertebral disc tissues of IDD rats, as attested by the decreased expression of ECM degradation-related factors MMPs (MMP2 and MMP3) and ADAMTSs (Adamts4, and Adamts5). Ginsenoside Rg3 exhibits anti-catabolic and anti-apoptotic effects in IL-1β-treated human NPCs. Ginsenoside Rg3 reduces apoptosis and catabolism in IDD rats. Alleviation of ginsenoside Rg3 in IDD via p38 MAPK pathway Ginsenoside Rg3 can alleviate NPC degeneration, recover the arrangement of annulus fibrous, and preserve more proteoglycan matrix via inactivating p38 MAPK pathway. In vitro, the fluorescence intensity of p38 is enhanced in IL-1β-stimulated NPCs, yet ginsenoside Rg3 offsets this promoting effect. In vivo, the phosphorylated p38 level is elevated in NPCs and the intervertebral disc tissues of IDD rats, while ginsenoside Rg3 works inversely. Ginsenoside Rg3 suppresses the IL-1β-stimulated p38 MAPK pathway in human NPCs Ginsenoside Rg3 inactivates the p38 MAPK pathway in IDD rats. Conclusion The anti-catabolic and anti-apoptotic effects of ginsenoside Rg3 in IL-1β treated human disc nucleus pulposus cells and in a rat model of disc degeneration are accomplished by inactivating the MAPK pathway, providing new clues on the treatment of IDD. Reference Chen J, Zhang B, Wu L, et al. Ginsenoside Rg3 exhibits anti-catabolic and anti-apoptotic effects in IL-1β treated human disc nucleus pulposus cells and in a rat model of disc degeneration by inactivating the MAPK pathway. Cell Mol Biol. 2024;70(1):233-238. doi:10.14715/cmb/2024.70.1.32 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be responsible or liable in any way for any claims, damages, losses, expenses or costs  resulting or arising directly or indirectly from your reliance on the information and material on this website.

02 Apr

NR as a Promising Therapeutic Candidate for Alpers' Disease

Introduction Alpers' disease is both a neurodegenerative disorder and a metabolic disorder, which is tightly linked to mitochondrial dysfunction and mutations in the catalytic subunit of polymerase gamma (POLG) gene. Noteworthily, supplementation of NAD precursor, nicotinamide riboside (NR), is evidenced to explicitly ameliorate mitochondrial defects in cortical organoids of patients with Alpers' disease. About Alpers’ disease Alpers’ disease is an autosomal recessive disorder, which is often accompanied with cortical neuronal loss as well as depletion of mitochondrial DNA (mtDNA) and complex I (CI). The disease occurs in about 1 in 100,000 newborns. Most individuals with Alpers’ disease show no symptoms at birth. Diagnosis is generally established by determining the POLG gene. Once onset (usually between first and third years of life), patients may present the symptoms such as progressive encephalopathy, epilepsy, myoclonus, and myasthenia gravis. Currently, there is no effective method to cure this disease. Establishment of Alpers' disease model in vitro Induced pluripotent stem cells (iPSCs) are generated from Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), followed by differentiation into cortical organoids and neural stem cells (NSCs). Alpers's iPSCs exhibit mild mitochondrial alterations, including an elevated L-lactate level and a depletion of CI. Alpers' NSCs manifest profound mtDNA depletion and mitochondrial dysfunction. Alpers' cortical organoids demonstrate cortical neuronal loss and astrocyte accumulation. The role of NR in Alpers' cortical organoids Long-term treatment with NR partially ameliorates the neurodegenerative alterations observed in Alpers' cortical organoids. Specifically, supplementation of NR effectively counteracts neuronal loss, glial enrichment, and mitochondrial damage observed in cortical organoids of patients with Alpers' disease. Reversal of the dysregulated pathways in Alpers' patient organoids post NR treatment NR treatment offsets the downregulation of mitochondrial  and synaptogenesis-related pathways, as well as upregulation of pathways associated with astrocyte/glial cells and neuroinflammation are obviously activated in Alpers' cortical organoids. Conclusion Replenishment of NR to increase NAD level can rescue mitochondrial defects and neuronal loss in iPSC-derived cortical organoid of Alpers’ disease, with relatively high safety and bioavailability, showing great promise as a therapeutic candidate for this intractable disorder. Reference Hong Y, Zhang Z, Yangzom T, et al. The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC derived Cortical Organoid of Alpers' Disease. Int J Biol Sci. 2024;20(4):1194-1217. Published 2024 Jan 25. doi:10.7150/ijbs.91624 BONTAC NR BONTAC is one of the few suppliers in China that can launch mass production of raw materials for NR, with self-owned factory and professional R&D team. Up till now, there are 173 BONTAC patents. BONTAC provides one-stop service for customized products. Both malate and chloride salt forms of NR are available. By dirt of unique Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method, the product content and conversion rate can be maintained in a higher level. The purity of BONTAC NR can reach above 97%. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The opinions expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

02 Apr

The Prospect of the NAD+ Precursors in Age-related Diseases

1. Introduction Age-related NAD+ depletion affects physiological functions and contributes to various aging-related diseases. NAD+ precursors can significantly elevate NAD+ level in murine tissues, effectively mitigate metabolic syndrome, enhance cardiovascular health, protect against neurodegeneration, and boost muscular strength, with broad prospect in the anti-aging-related field. 2. The synthesis and metabolism of NAD+ in age-related pathologies NAD+ is synthesized from NAD+ precursors and amino acids tryptophan via three main pathways: De novo, Preiss-Handler, and Salvage. Supplementation of NAD+ precursors can be advantageous in maintaining normal cellular metabolism regulated by NAD+ and NAD+-dependent enzymes such as Sirtuins, PARP, CD38, and SARM1. NAD+ intermediates require conversion into NA to elevate NAD+ level. NAD+ and its metabolism-related enzymes have very important roles in biological processes such as cellular metabolic processes, gene expression, apoptosis and carcinogenesis. NAD+ repletion is drawing attention as an anti-aging intervention. NAD+ precursors, such as NA, NAM, NR, and NMN, provide beneficial effects in various preclinical disease models of age-induced deficits, including metabolic disorders, cardiovascular, neurodegenerative diseases, and musculoskeletal diseases. 3. Comparison on the efficacy of replenishing NAD precursors in pre-clinical studies and clinical studies in age-related pathologies The downregulation of NAD+ level in cells and tissues is not a universal phenomenon for aging-related pathologies. NAD+ merely decreases with age in certain tissues. The efficacy of NAD+ precursors in clinical studies has been limited in comparison with that in the pre-clinical studies. Noteworthily, this issue can be addressed as long as much attention has been paid to the metabolism of NAD. With regards to the oral supplementation of NAD+ precursors, there is obvious link between NAD metabolism and gut microbes. Specifically, oral consumption of NMN is converted into NAMN through interaction with the gut microbiome. In addition, dietary NAM and NR are converted into NA through gut microbiota. 4. Future research directions regarding the NAD+ metabolism It is fundamental to consider how the gut microbiome affects NAD+ metabolism, and changes in microbiome composition may affect the availability of NAD+ precursors. Future studies also require the comparative analysis of different precursors, and the role of gut microbiomes regarding various intermediaries needs to be investigated. Assessment of how NAD+ precursors affect microbiota and how their interaction with NAD+ metabolism benefits the physiological condition is essential for future preclinical and clinical studies. 5. Conclusion Supplementation of suitable NAD+ precursors or intervening in NAD+ metabolism can restore the body's NAD+ level, which is of great practical significance for effectively improving aging-related diseases and prolonging healthy life span is of great practical significance for effectively improving aging-related diseases and prolonging healthy life span. NAD metabolism involves gut microbiome, and in-depth research on their interaction is possibly an important breakthrough in the future to combat aging-related pathologies. Reference Iqbal T, Nakagawa T. The therapeutic perspective of NAD+ precursors in age-related diseases. Biochem Biophys Res Commun. Published online February 2, 2024. doi:10.1016/j.bbrc.2024.149590 About BONTAC  BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 160 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN and NR), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. BONTAC holds no responsibility for any claims, damages, losses, expenses, costs or liabilities whatsoever resulting or arising directly or indirectly from your reliance on the information and material on this website.

Do you have any question? Don't hesitate to contact with us