What is NADH stands | BONTAC

NADH stands คืออะไร | บอนแทค

ผง NADH| NADH ย่อมาจาก " Beta-nicotinamide adenine dinucleotide (NAD) + hydrogen (H)" โดยมีหมายเลข CAS 606-68-8v และสูตรทางเคมีสูตรทางเคมีของ C21H27N7O14P2 เกิดขึ้นตามธรรมชาติในร่างกายและมีบทบาทในการสร้างพลังงาน โดยทั่วไป NADH เป็นสารเคมีที่ผลิตในร่างกายของคุณจากไนอาซิน ซึ่งเป็นวิตามินบีชนิดหนึ่ง ผง NADH เป็นของแข็งสีขาวหรือสีขาวนวลและสามารถผลิตได้ด้วยเทคนิคพิเศษในระดับการผลิตทางอุตสาหกรรม

ได้รับใบเสนอราคา
หน้าตา

ทําไมต้องเลือก BONTAC?

ข้อดีของ NMNH

เอ็นเอ็มเอ็นเอช: 1. "Bonzyme" วิธีการเอนไซม์ทั้งหมดเป็นมิตรกับสิ่งแวดล้อมไม่มีสารตกค้างของตัวทําละลายที่เป็นอันตรายในการผลิตผง 2. Bontac เป็นผู้ผลิตรายแรกในโลกที่ผลิตผง NMNH ในระดับความบริสุทธิ์สูงเสถียรภาพ 3. เทคโนโลยีการทําให้บริสุทธิ์เจ็ดขั้นตอน "Bonpure" พิเศษความบริสุทธิ์สูง (สูงถึง 99%) และความเสถียรของการผลิตผง NMNH 4. โรงงานที่เป็นเจ้าของเองและได้รับการรับรองระดับสากลจํานวนหนึ่งเพื่อให้แน่ใจว่ามีคุณภาพสูงและอุปทานที่มั่นคงของผลิตภัณฑ์ผง NMNH 5. ให้บริการปรับแต่งโซลูชันผลิตภัณฑ์แบบครบวงจร

ข้อดีของ NADH

นาดี: 1. วิธี Bonzyme ทั้งเอนไซม์เป็นมิตรกับสิ่งแวดล้อมไม่มีสารตกค้างของตัวทําละลายที่เป็นอันตราย 2. เทคโนโลยีการทําให้บริสุทธิ์เจ็ดขั้นตอนของ Bonpure พิเศษความบริสุทธิ์สูงกว่า 98% 3. รูปแบบคริสตัลกระบวนการจดสิทธิบัตรพิเศษเสถียรภาพที่สูงขึ้น 4. ได้รับการรับรองระดับสากลจํานวนหนึ่งเพื่อให้มั่นใจในคุณภาพสูง 5. สิทธิบัตร NADH ในประเทศและต่างประเทศ 8 ฉบับ เป็นผู้นําในอุตสาหกรรม 6. ให้บริการปรับแต่งโซลูชันผลิตภัณฑ์แบบครบวงจร

ข้อดีของ NAD

นาด:  1. "Bonzyme" วิธีการทั้งเอนไซม์เป็นมิตรกับสิ่งแวดล้อมไม่มีสารตกค้างของตัวทําละลายที่เป็นอันตราย 2. ซัพพลายเออร์ที่มั่นคงขององค์กรกว่า 1,000+ แห่งทั่วโลก 3. เทคโนโลยีการทําให้บริสุทธิ์เจ็ดขั้นตอน "Bonpure" ที่ไม่เหมือนใคร เนื้อหาผลิตภัณฑ์ที่สูงขึ้น และอัตราการแปลงที่สูงขึ้น 4. เทคโนโลยีการทําแห้งแบบแช่แข็งเพื่อให้มั่นใจในคุณภาพของผลิตภัณฑ์ที่มั่นคง 5. เทคโนโลยีคริสตัลที่เป็นเอกลักษณ์ความสามารถในการละลายของผลิตภัณฑ์ที่สูงขึ้น 6. โรงงานที่เป็นของตนเองและได้รับการรับรองระดับสากลจํานวนหนึ่งเพื่อให้แน่ใจว่ามีคุณภาพสูงและอุปทานที่มั่นคงของผลิตภัณฑ์

ข้อดีของ MNM

เอ็นเอ็มเอ็น:  1. "Bonzyme" วิธีการทั้งเอนไซม์เป็นมิตรกับสิ่งแวดล้อมไม่มีสารตกค้างของตัวทําละลายที่เป็นอันตราย 2. เทคโนโลยีการทําให้บริสุทธิ์เจ็ดขั้นตอน "Bonpure" พิเศษความบริสุทธิ์สูง (สูงถึง 99.9%) และความเสถียร 3. เทคโนโลยีชั้นนําของอุตสาหกรรม: สิทธิบัตร NMN ในประเทศและต่างประเทศ 15 ฉบับ 4. โรงงานของตนเองและได้รับการรับรองระดับสากลจํานวนหนึ่งเพื่อให้แน่ใจว่ามีคุณภาพสูงและอุปทานที่มั่นคงของผลิตภัณฑ์ 5. การศึกษาในร่างกายหลายชิ้นแสดงให้เห็นว่า Bontac NMN ปลอดภัยและมีประสิทธิภาพ 6. ให้บริการปรับแต่งโซลูชันผลิตภัณฑ์แบบครบวงจร 7. ผู้จัดจําหน่ายวัตถุดิบ NMN ของทีม David Sinclair ที่มีชื่อเสียงของมหาวิทยาลัยฮาร์วาร์ด

about BONTAC

เรามีโซลูชั่นที่ดีที่สุดสําหรับธุรกิจของคุณ

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (ต่อไปนี้จะเรียกว่า BONTAC) เป็นองค์กรไฮเทคที่ก่อตั้งขึ้นในเดือนกรกฎาคม 2012 BONTAC รวมการวิจัยและพัฒนา การผลิต และการขาย ด้วยเทคโนโลยีการเร่งปฏิกิริยาของเอนไซม์เป็นหลัก และโคเอนไซม์และผลิตภัณฑ์จากธรรมชาติเป็นผลิตภัณฑ์หลัก BONTAC มีผลิตภัณฑ์หลักหกชุด ซึ่งเกี่ยวข้องกับโคเอนไซม์ ผลิตภัณฑ์จากธรรมชาติ สารทดแทนน้ําตาล เครื่องสําอาง ผลิตภัณฑ์เสริมอาหาร และตัวกลางทางการแพทย์

ในฐานะผู้นําระดับโลกนาโนเอ็มเอ็นอุตสาหกรรม BONTAC มีเทคโนโลยีการเร่งปฏิกิริยาทั้งเอนไซม์แห่งแรกในประเทศจีน ผลิตภัณฑ์โคเอนไซม์ของเราใช้กันอย่างแพร่หลายในอุตสาหกรรมสุขภาพการแพทย์และความงามการเกษตรสีเขียวชีวการแพทย์และสาขาอื่น ๆ BONTAC ยึดมั่นในนวัตกรรมอิสระที่มีมากกว่าสิทธิบัตรการประดิษฐ์ 170 ฉบับ. แตกต่างจากอุตสาหกรรมการสังเคราะห์ทางเคมีและการหมักแบบดั้งเดิม BONTAC มีข้อได้เปรียบของเทคโนโลยีการสังเคราะห์ทางชีวภาพคาร์บอนต่ําที่เป็นมิตรต่อสิ่งแวดล้อมและมีมูลค่าเพิ่มสูง ยิ่งไปกว่านั้น BONTAC ยังได้จัดตั้งศูนย์วิจัยเทคโนโลยีวิศวกรรมโคเอนไซม์แห่งแรกในระดับจังหวัดในประเทศจีนซึ่งเป็นศูนย์เดียวในมณฑลกวางตุ้ง

ในอนาคต BONTAC จะมุ่งเน้นไปที่ข้อได้เปรียบของเทคโนโลยีการสังเคราะห์ทางชีวภาพที่เป็นมิตรต่อสิ่งแวดล้อม คาร์บอนต่ํา และมีมูลค่าเพิ่มสูง และสร้างความสัมพันธ์ทางนิเวศวิทยากับสถาบันการศึกษา ตลอดจนพันธมิตรต้นน้ํา/ปลายน้ํา เป็นผู้นําในอุตสาหกรรมชีวภาพสังเคราะห์อย่างต่อเนื่อง และสร้างชีวิตที่ดีขึ้นสําหรับมนุษย์

อ่านเพิ่มเติม

NADH (Nicotinamide Adenine Dinucleotide Hydrogen) เป็นรูปแบบที่ลดลงของ NAD+ และมีบทบาทสําคัญในการเผาผลาญของเซลล์โดยทําหน้าที่เป็นตัวพาอิเล็กตรอนในการผลิต ATP ซึ่งเป็นสกุลเงินพลังงานหลักของเซลล์ NADH มีส่วนเกี่ยวข้องกับกระบวนการหายใจของเซลล์ โดยเฉพาะห่วงโซ่การขนส่งอิเล็กตรอน ซึ่งจะบริจาคอิเล็กตรอนไปยังห่วงโซ่ทางเดินหายใจและช่วยสร้าง ATP NADH มักใช้เป็นผลิตภัณฑ์เสริมอาหาร โดยเฉพาะอย่างยิ่งในการรักษาความเหนื่อยล้าและเป็นการรักษาความผิดปกติทางระบบประสาทบางอย่าง

 
บทวิจารณ์ของผู้ใช้

สิ่งที่ผู้ใช้พูดเกี่ยวกับ BONTAC

บอนแทคเป็นพันธมิตรที่เชื่อถือได้ซึ่งเราทํางานด้วยมาหลายปี ความบริสุทธิ์ของโคเอนไซม์สูงมาก COA ของพวกเขาสามารถบรรลุผลการทดสอบที่ค่อนข้างสูง

หน้า

ฉันค้นพบ BONTAC ในปี 2014 เนื่องจากบทความของ David ในเซลล์เกี่ยวกับ NAD และ NMN ที่เกี่ยวข้องแสดงให้เห็นว่าเขาใช้ NMN ของ BONTAC สําหรับวัสดุทดลองของเขา จากนั้นเราก็พบพวกเขาในประเทศจีน หลังจากร่วมมือกันมาหลายปี

แฮงส์

ฉันคิดว่าสีเขียว สุขภาพดี และความบริสุทธิ์สูงเป็นข้อดีของผลิตภัณฑ์ของ BONTAC เมื่อเทียบกับผลิตภัณฑ์อื่นๆ ฉันยังคงทํางานกับพวกเขาจนถึงทุกวันนี้

ฟิลลิป

ในปี 2560 เราเลือกโคเอนไซม์ของ BONTAC ซึ่งทีมงานของเราประสบปัญหาทางเทคนิคมากมายและปรึกษาทีมเทคนิคของพวกเขา ซึ่งสามารถให้วิธีแก้ปัญหาที่ดีแก่เราได้ ผลิตภัณฑ์ของพวกเขาจัดส่งเร็วมากและทํางานได้อย่างมีประสิทธิภาพมากขึ้น

กอบส์
คําถามที่พบบ่อย

คุณมีคําถามใด ๆ หรือไม่?

NADH ถูกสังเคราะห์โดยร่างกายจึงไม่ใช่สารอาหารที่จําเป็น ต้องใช้นิโคตินาไมด์สารอาหารที่จําเป็นในการสังเคราะห์ และบทบาทในการผลิตพลังงานเป็นสิ่งสําคัญอย่างแน่นอน นอกเหนือจากบทบาทในห่วงโซ่การขนส่งอิเล็กตรอนของไมโทคอนเดรียแล้ว NADH ยังผลิตในไซโตซอล เยื่อหุ้มไมโทคอนเดรียไม่สามารถซึมผ่าน NADH ได้ และสิ่งกีดขวางการซึมผ่านนี้จะแยกไซโตพลาสซึมออกจากสระ NADH ของไมโทคอนเดรียได้อย่างมีประสิทธิภาพ อย่างไรก็ตาม ไซโตพลาสซึม NADH สามารถใช้สําหรับการผลิตพลังงานชีวภาพได้ สิ่งนี้เกิดขึ้นเมื่อกระสวยมาเลต-แอสพาร์เตตแนะนําการลดเทียบเท่าจาก NADH ในไซโตซอลไปยังห่วงโซ่การขนส่งอิเล็กตรอนของไมโทคอนเดรีย รถรับส่งนี้ส่วนใหญ่เกิดขึ้นในตับและหัวใจ
การกระทําของ NADH เพิ่มเติมไม่ชัดเจน อาหารเสริม NADH ในช่องปากถูกนํามาใช้เพื่อต่อสู้กับความเหนื่อยล้าง่ายๆ เช่นเดียวกับความผิดปกติที่ลึกลับและสิ้นเปลืองพลังงาน เช่น กลุ่มอาการเหนื่อยล้าเรื้อรังและไฟโบรมัยอัลเจีย นักวิจัยยังศึกษาคุณค่าของอาหารเสริม NADH ในการปรับปรุงการทํางานของจิตใจในผู้ที่เป็นโรคอัลไซเมอร์ และลดความพิการทางร่างกายและบรรเทาภาวะซึมเศร้าในผู้ที่เป็นโรคพาร์กินสัน บุคคลที่มีสุขภาพดีบางคนยังรับประทานอาหารเสริม NADH เพื่อปรับปรุงสมาธิและความสามารถในการจํา รวมทั้งเพิ่มความอดทนในการกีฬา อย่างไรก็ตาม จนถึงปัจจุบันยังไม่มีการศึกษาที่ตีพิมพ์เพื่อระบุว่าการใช้ NADH มีประสิทธิภาพหรือปลอดภัยสําหรับวัตถุประสงค์เหล่านี้
ขั้นแรกให้ตรวจสอบโรงงาน หลังจากการคัดกรอง บริษัท NADH ที่เผชิญหน้ากับผู้บริโภคโดยตรงจะให้ความสําคัญกับการสร้างแบรนด์มากขึ้น ดังนั้นสําหรับแบรนด์ที่ดีคุณภาพจึงเป็นสิ่งสําคัญที่สุดและสิ่งแรกในการควบคุมคุณภาพของวัตถุดิบคือการตรวจสอบโรงงาน บริษัท Bontac ผลิตผง NADH คุณภาพสูงด้วยอาหารของ SGS ประการที่สอง ทดสอบความบริสุทธิ์ ความบริสุทธิ์เป็นหนึ่งในพารามิเตอร์ที่สําคัญที่สุดของผง NMN หากไม่สามารถรับประกัน NMN ที่มีความบริสุทธิ์สูงสารที่เหลือมีแนวโน้มที่จะเกินมาตรฐานที่เกี่ยวข้อง ตามใบรับรองที่แนบมาแสดงให้เห็นว่าผง NADH ที่ผลิตโดย Bontac มีความบริสุทธิ์ถึง 99% สุดท้าย จําเป็นต้องมีสเปกตรัมการทดสอบระดับมืออาชีพเพื่อพิสูจน์ วิธีการทั่วไปในการกําหนดโครงสร้างของสารประกอบอินทรีย์ ได้แก่ Nuclear Magnetic Resonance Spectroscopy (NMR) และ High-Resolution Mass Spectrometry (HRMS) โดยปกติแล้วจากการวิเคราะห์สเปกตรัมทั้งสองนี้โครงสร้างของสารประกอบสามารถกําหนดได้ในเบื้องต้น

การอัปเดตและบล็อกโพสต์ของเรา

คลี่คลายผลกระทบของการรักษาด้วย Ginsenoside Rg3 ต่อการบาดเจ็บที่เกิดจาก IL-1β ของ NPC

แนะ นำ การเสื่อมของหมอนรองกระดูกสันหลัง (IDD) เป็นโรคกระดูกและข้อที่พบบ่อย ซึ่งมาพร้อมกับการตายของเซลล์นิวเคลียสพัลโปซัส (NPCs) มากเกินไป และการเสื่อมสภาพของเมทริกซ์นอกเซลล์ (ECM) โดยมีอาการหลักของความเจ็บปวดและชาที่เอว ขา และเท้า ตลอดจนการอักเสบบนและรอบๆ พื้นผิวของเนื้อเยื่อกระดูก ที่น่าทึ่งคือ ginsenoside Rg3 ซึ่งเป็นสารออกฤทธิ์หลักของโสม ได้รับการพิสูจน์แล้วว่ามีฤทธิ์ต่อต้าน catabolic และต่อต้าน apoptotic ใน NPC มนุษย์ที่ได้รับการบําบัดด้วย IL-1β และหนู IDD โดยการยับยั้งวิถี p38 MAPK ปัจจัยเสี่ยงของ IDD โดยทั่วไป IDD เกี่ยวข้องกับปัจจัยเสี่ยง เช่น อายุ การออกกําลังกายมากเกินไป สภาพแวดล้อมในการทํางาน และพันธุกรรม เมื่ออายุมากขึ้นปริมาณน้ําในร่างกายและในหมอนรองกระดูกสันหลังจะลดลงตามลําดับ หมอนรองกระดูกสันหลังที่ขาดความชื้นจะสูญเสียการทํางานยืดหยุ่นและแข็ง เมื่อมีการกระตุ้นหรือแรงกดทับ หมอนรองกระดูกสันหลังอาจแตก ซึ่งนําไปสู่การบาดเจ็บของหมอนรองกระดูกสันหลัง ตัวอย่างเช่น การบาดเจ็บทางกลไกที่เกิดจากการออกกําลังกายและการทํางานมากเกินไปอาจเร่งความเปราะบางของหมอนรองกระดูกและทําให้ IDD แย่ลง ฤทธิ์ต่อต้าน catabolic และต่อต้านการตายของ ginsenoside Rg3 ใน NPC มนุษย์ที่ได้รับการรักษาด้วย IL-1β และหนู IDD Ginsenoside Rg3 มีบทบาทต่อต้านการตายใน NPC ของมนุษย์ที่ได้รับการรักษาด้วย IL-1β และหนู IDD ดังที่เห็นได้จากการควบคุมโปรตีน Bax ที่ลดลงและการควบคุมโปรตีนต่อต้านการตายของเซลล์ Bcl-2 ใน NPC ที่กระตุ้นด้วย IL-1β และหนูรุ่น IDD นอกจากนี้ ginsenoside Rg3 ยังยับยั้งการเสื่อมสภาพของ ECM ใน NPC ที่กระตุ้นด้วย IL-1β และเนื้อเยื่อหมอนรองกระดูกสันหลังของหนู IDD ดังที่พิสูจน์ได้จากการแสดงออกที่ลดลงของปัจจัยที่เกี่ยวข้องกับการย่อยสลาย ECM MMPs (MMP2 และ MMP3) และ ADAMTSs (Adamts4 และ Adamts5) Ginsenoside Rg3 แสดงฤทธิ์ต่อต้าน catabolic และต่อต้านการตายใน NPC มนุษย์ที่ได้รับการรักษาด้วย IL-1β Ginsenoside Rg3 ช่วยลดการตายของเซลล์แสงและ catabolism ในหนู IDD การบรรเทา ginsenoside Rg3 ใน IDD ผ่านเส้นทาง p38 MAPK Ginsenoside Rg3 สามารถบรรเทาความเสื่อมของ NPC ฟื้นฟูการจัดเรียงของเส้นใยวงแหวน และรักษาเมทริกซ์โปรตีโอไกลแคนได้มากขึ้นผ่านการปิดใช้งานวิถี p38 MAPK ในหลอดทดลอง ความเข้มของการเรืองแสงของ p38 จะเพิ่มขึ้นใน NPC ที่กระตุ้นด้วย IL-1β แต่ ginsenoside Rg3 จะชดเชยผลการส่งเสริมนี้ ในร่างกาย ระดับ p38 ฟอสโฟริเลตจะสูงขึ้นใน NPC และเนื้อเยื่อหมอนรองกระดูกสันหลังของหนู IDD ในขณะที่ ginsenoside Rg3 ทํางานผกผัน Ginsenoside Rg3 ยับยั้งวิถี p1β MAPK ที่กระตุ้นด้วย IL-38 ใน NPC ของมนุษย์ Ginsenoside Rg3 ยับยั้งเส้นทาง p38 MAPK ในหนู IDD บทสรุป ฤทธิ์ต้าน catabolic และต่อต้านการตายของ ginsenoside Rg3 ในเซลล์พัลโปซัสนิวเคลียสของหมอนรองกระดูกที่ผ่านการบําบัดด้วย IL-1β และในแบบจําลองหนูของการเสื่อมของหมอนรองกระดูกทําได้โดยการยับยั้งวิถี MAPK ซึ่งให้เบาะแสใหม่เกี่ยวกับการรักษา IDD หนังสืออ้างอิง Chen J, Zhang B, Wu L, et al. Ginsenoside Rg3 แสดงฤทธิ์ต่อต้าน catabolic และต่อต้านการตายในเซลล์พัลโปซัสนิวเคลียสของหมอนรองกระดูกที่ผ่านการบําบัดด้วย IL-1β และในแบบจําลองหนูของการเสื่อมของหมอนรองกระดูกโดยการยับยั้งวิถี MAPK เซลล์โมลชีวภาพ 2024; 70(1):233-238. ดอย:10.14715/cmb/2024.70.1.32 บอนแทค จินเซโนไซด์ BONTAC ทุ่มเทให้กับการวิจัยและพัฒนา การผลิต และจําหน่ายวัตถุดิบสําหรับโคเอนไซม์และผลิตภัณฑ์จากธรรมชาติตั้งแต่ปี 2555 โดยมีโรงงานเป็นเจ้าของเอง สิทธิบัตรทั่วโลกกว่า 170 รายการ ตลอดจนทีมงาน R&D ที่แข็งแกร่ง BONTAC มีประสบการณ์ด้านการวิจัยและพัฒนาอันยาวนานและเทคโนโลยีขั้นสูงในการสังเคราะห์ทางชีวภาพของ ginsenosides Rh2/Rg3 ที่หายาก ด้วยวัตถุดิบบริสุทธิ์ อัตราการแปลงที่สูงขึ้น และเนื้อหาที่สูงขึ้น (สูงถึง 99%) บริการแบบครบวงจรสําหรับโซลูชันผลิตภัณฑ์ที่กําหนดเองมีอยู่ใน BONTAC ด้วยเทคโนโลยีการสังเคราะห์เอนไซม์ Bonzyme ที่เป็นเอกลักษณ์ ทั้งไอโซเมอร์ชนิด S และชนิด R สามารถสังเคราะห์ได้อย่างแม่นยําที่นี่ ด้วยกิจกรรมที่แข็งแกร่งขึ้นและการกําหนดเป้าหมายที่แม่นยํา ผลิตภัณฑ์ของเราอยู่ภายใต้การตรวจสอบตนเองของบุคคลที่สามอย่างเข้มงวด ซึ่งคุ้มค่ากับความน่าเชื่อถือ ปฏิเสธ บทความนี้อ้างอิงจากการอ้างอิงในวารสารวิชาการ ข้อมูลที่เกี่ยวข้องจัดทําขึ้นเพื่อวัตถุประสงค์ในการแบ่งปันและการเรียนรู้เท่านั้น และไม่ได้แสดงถึงวัตถุประสงค์ในการให้คําแนะนําทางการแพทย์ใดๆ หากมีการละเมิดใด ๆ โปรดติดต่อผู้เขียนเพื่อลบ มุมมองที่แสดงในบทความนี้ไม่ได้แสดงถึงจุดยืนของ BONTAC ไม่ว่าในกรณีใด BONTAC จะไม่รับผิดชอบหรือรับผิดไม่ว่าในทางใดทางหนึ่งสําหรับการเรียกร้อง ความเสียหาย ความสูญเสีย ค่าใช้จ่าย หรือค่าใช้จ่ายใดๆ ที่เกิดขึ้นหรือเกิดขึ้นโดยตรงหรือโดยอ้อมจากการพึ่งพาข้อมูลและเนื้อหาบนเว็บไซต์นี้

ตรวจสอบความเป็นไปได้ที่ดีของ Ginsenosides ที่หายากในฐานะยาและโภชนาการ

1. บทนํา ginsenosides ที่หายากซึ่งเป็นกลุ่มของ dammarane triterpenoids ที่มีอยู่ในความอุดมสมบูรณ์ตามธรรมชาติต่ําทําให้เกิดความกังวลอย่างมากจากนักวิชาการเมื่อเร็ว ๆ นี้แสดงให้เห็นถึงศักยภาพที่ดีในฐานะส่วนประกอบที่ส่องแสงในยาและโภชนาการ 2. ความแตกต่างระหว่าง ginsenosides หลักและ ginsenosides ที่หายาก Ginsenosides ส่วนใหญ่สกัดจากพืช Araliaceae เช่น โสม Panax, โสม Panax notoginseng และ Panax quinquefolius ในแง่ของความอุดมสมบูรณ์ตามธรรมชาติ ginsenosides มักจะแบ่งออกเป็นซาโปนินมาโคร (หลัก) (ginsenosides Rb1, Rg1, Re, Rd ฯลฯ ) และ ginsenosides ที่หายาก (ทุติยภูมิ) (Rg5, Rk1, Rg3 เป็นต้น) เมื่อเทียบกับ ginsenosides ปฐมภูมิ ginsenosides ที่หายากนั้นง่ายต่อการดูดซึมโดยร่างกายมนุษย์โดยมีกิจกรรมทางชีวภาพที่สูงกว่ามากการซึมผ่านของเยื่อหุ้มและการดูดซึม 3. คุณสมบัติทางสเตอริโอเคมีของจินเซโนไซด์ที่หายาก ความแตกต่างที่ขับเคลื่อนด้วยสเตอริโอเคมีในฤทธิ์ทางชีวภาพส่วนใหญ่มุ่งเน้นไปที่ 20 (S / R) -Rg3 และ 20 (S / R) -Rh2 epimers คุณสมบัติทางสเตอริโอเคมีทําให้ ginsenosides ที่หายากมีฤทธิ์ทางชีวภาพที่หลากหลาย โดยปกติแล้ว ปัจจัยสําคัญที่ส่งผลต่อประสิทธิภาพของ ginsenosises ที่หายากจะครอบคลุมจํานวนโมเลกุลของน้ําตาล ตัวอย่างเช่น ฤทธิ์ต้านเนื้องอกเพิ่มขึ้นเมื่อจํานวนส่วนน้ําตาลในจินเซโนไซด์ลดลง 4. ฤทธิ์ทางเภสัชวิทยาของ ginsenosides ที่หายาก ginsenosides ที่หายากทําหน้าที่เป็นลิแกนด์ตามธรรมชาติสําหรับตัวรับเฉพาะบางชนิดเช่นกรดน้ําดี (FXR / TGR5), ฮอร์โมนสเตียรอยด์, ฮอร์โมนเอสโตรเจน, กลูโคคอร์ติคอยด์, แอนโดรเจน, เกล็ดเลือดอะดีโนซีนไดฟอสเฟตซึ่งถูกกําหนดให้ออกฤทธิ์ควบคุมภูมิคุ้มกันและ adaptogen-like ผลต่อต้านริ้วรอยฤทธิ์ต้านเนื้องอกตลอดจนผลกระทบต่อระบบหัวใจและหลอดเลือดและหลอดเลือดสมองระบบประสาทส่วนกลางโรคอ้วนและเบาหวาน 5. ผลกระทบของจินเซโนไซด์ที่หายากต่อจุลินทรีย์ในลําไส้ นอกเหนือจากกิจกรรมทางเภสัชวิทยาที่กล่าวถึงข้างต้นแล้ว ginsenosides ที่หายากยังมีส่วนช่วยในการรักษาสภาวะสมดุลของจุลินทรีย์ในลําไส้อีกด้วย ภายใต้สภาวะทางสรีรวิทยาปกติ จะมีความสมดุลแบบไดนามิกในจุลินทรีย์ในลําไส้ ซึ่งจะถูกหยุดชะงักในการเริ่มมีอาการและการพัฒนาของโรคบางชนิด ginenosides ที่หายากสามารถฟื้นฟูความอุดมสมบูรณ์ที่ลดลงของจุลินทรีย์ที่ได้รับผลกระทบบางชนิดควบคุมจุลนิเวศวิทยาในลําไส้ให้มีอิทธิพลต่อการทํางานของสรีรวิทยาของโฮสต์ 6. สรุป ด้วยการใช้ประโยชน์จากคุณสมบัติทางสเตอริโอเคมี ginsenosides ที่หายากแสดงออกฤทธิ์ทางชีวภาพที่เหนือกว่า ซึ่งเปิดโอกาสใหม่สําหรับการค้นพบและพัฒนายาและโภชนาการ หนังสืออ้างอิง Szot JO, Cuny H, Martin EM และคณะ ลายเซ็นการเผาผลาญสําหรับความผิดปกติของการขาด NAD แต่กําเนิดที่พึ่งพา NADSYN1 เจ คลิน ลงทุน 2024; 134(4):e174824 . 134(4):อี 174824 . เผยแพร่เมื่อ 2024 ก.พ. 15. ดอย:10.1172/JCI174824 บอนแทค จินเซโนไซด์ BONTAC ทุ่มเทให้กับการวิจัยและพัฒนา การผลิต และจําหน่ายวัตถุดิบสําหรับโคเอนไซม์และผลิตภัณฑ์จากธรรมชาติตั้งแต่ปี 2555 โดยมีโรงงานเป็นเจ้าของเอง สิทธิบัตรทั่วโลกกว่า 170 รายการ ตลอดจนทีมงาน R&D ที่แข็งแกร่งซึ่งประกอบด้วยแพทย์และปริญญาโท BONTAC มีประสบการณ์ด้านการวิจัยและพัฒนาอันยาวนานและเทคโนโลยีขั้นสูงในการสังเคราะห์ทางชีวภาพของ ginsenosides Rh2/Rg3 ที่หายาก ด้วยวัตถุดิบบริสุทธิ์ อัตราการแปลงที่สูงขึ้น และเนื้อหาที่สูงขึ้น (สูงถึง 99%) บริการแบบครบวงจรสําหรับโซลูชันผลิตภัณฑ์ที่กําหนดเองมีอยู่ใน BONTAC ด้วยเทคโนโลยีการสังเคราะห์เอนไซม์ Bonzyme ที่เป็นเอกลักษณ์ ทั้งไอโซเมอร์ชนิด S และชนิด R สามารถสังเคราะห์ได้อย่างแม่นยําที่นี่ ด้วยกิจกรรมที่แข็งแกร่งขึ้นและการกําหนดเป้าหมายที่แม่นยํา ผลิตภัณฑ์ของเราอยู่ภายใต้การตรวจสอบตนเองของบุคคลที่สามอย่างเข้มงวด ซึ่งคุ้มค่ากับความน่าเชื่อถือ ปฏิเสธ บทความนี้อ้างอิงจากการอ้างอิงในวารสารวิชาการ ข้อมูลที่เกี่ยวข้องจัดทําขึ้นเพื่อวัตถุประสงค์ในการแบ่งปันและการเรียนรู้เท่านั้น และไม่ได้แสดงถึงวัตถุประสงค์ในการให้คําแนะนําทางการแพทย์ใดๆ หากมีการละเมิดใด ๆ โปรดติดต่อผู้เขียนเพื่อลบ มุมมองที่แสดงในบทความนี้ไม่ได้แสดงถึงจุดยืนของ BONTAC  ไม่ว่าในกรณีใด BONTAC จะไม่รับผิดชอบหรือรับผิดไม่ว่าในทางใดทางหนึ่งสําหรับการเรียกร้อง ความเสียหาย ความสูญเสีย ค่าใช้จ่าย ต้นทุน หรือความรับผิดใด ๆ (รวมถึงแต่ไม่จํากัดเพียงความเสียหายทางตรงหรือทางอ้อมสําหรับการสูญเสียผลกําไร การหยุดชะงักทางธุรกิจ หรือการสูญเสียข้อมูล) ที่เป็นผลหรือเกิดขึ้นโดยตรงหรือโดยอ้อมจากการพึ่งพาข้อมูลและเนื้อหาบนเว็บไซต์นี้

ความสําคัญของ NAD+ ในความชราของลําไส้ที่เกิดจากการกลายพันธุ์ของ mtDNA ที่เพิ่มขึ้น

1. บทนํา ความชราในสัตว์เลี้ยงลูกด้วยนมมักเกิดขึ้นพร้อมกับความผิดปกติของสภาวะสมดุลของลําไส้และการสะสมของการกลายพันธุ์ของไมโทคอนเดรียดีเอ็นเอ (mtDNA) การกลายพันธุ์ของ mtDNA ที่มีภาระสูงนําไปสู่การพร่อง NAD+ และกระตุ้นปัจจัยการถอดความ UPRmt ที่ขึ้นกับ ATF5 ซึ่งจะส่งเสริมและทําให้ฟีโนไทป์ชราของลําไส้รุนแรงขึ้น ด้วยการเสริมด้วย NMN สารตั้งต้น NAD+ ฟีโนไทป์การชราภาพของลําไส้นี้สามารถช่วยชีวิตได้ในระดับหนึ่ง ดังที่เห็นได้จากการฟื้นตัวของความแตกต่างของออร์กานอยด์ในลําไส้และจํานวนเซลล์ต้นกําเนิดในลําไส้ที่เพิ่มขึ้น 2. การพร่อง NAD+ ระหว่างการชราของลําไส้ที่เกิดจากการกลายพันธุ์ของ mtDNA มีการด้อยค่าของ NADH/NAD+ รีดอกซ์ในลําไส้ Mut/Mut*** ดังที่แสดงให้เห็นโดยวิถีการประกอบคอมเพล็กซ์ NADH dehydrogenase ที่อุดมไปด้วย ผ่านการถ่ายโอนเซลล์เข้ารหัสในลําไส้ด้วย SoNar (เซ็นเซอร์ NADH/NAD+) จะสังเกตเห็นอัตราส่วน NADH/NAD+ ที่สูงขึ้นในหนู Mut/Mut *** ซึ่งบ่งบอกถึงศักยภาพรีดอกซ์ที่รบกวน ในทํานองเดียวกัน หลังจากการถ่ายโอนเซลล์เข้ารหัสในลําไส้ด้วย FiNad (เซ็นเซอร์ NAD+) จะพบปริมาณ NAD+ น้อยลงในเซลล์ Mut/Mut*** การค้นพบทั้งหมดนี้สะท้อนให้เห็นถึงการพร่อง NAD+ ในความชราของลําไส้ที่เกิดจากการกลายพันธุ์ของ mtDNA  หมายเหตุ: การกลายพันธุ์ของ mtDNA แบ่งออกเป็นสี่ประเภท: เล็กน้อย (WT/WT), ต่ํา (WT/WT*), ปานกลาง (WT/Mut**) และสูง (Mut/Mut***) 3. ความเชื่อมโยงระหว่างเนื้อหาการกลายพันธุ์ของ mtDNA กับความชราของลําไส้ทางสรีรวิทยา ลําไส้เล็กของลําไส้หนูที่มีอายุมากมีลักษณะเป็นจํานวนห้องใต้ดินในลําไส้ที่ลดลงความยาวของวิลลัสที่เพิ่มขึ้นการแสดงออกที่สูงขึ้นของ CDKN1A / p21 (เครื่องหมายชราที่รู้จักกันดี) และความยาวของเทโลเมียร์ที่สั้นลงซึ่งมาพร้อมกับการสะสมของการกลายพันธุ์ของ mtDNA ซึ่งส่วนใหญ่เป็นการกลายพันธุ์ของจุดความถี่ต่ํา (น้อยกว่า 0.05) 4. โปรตีน LONP1 เป็นตัวบ่งชี้ความชราของลําไส้ที่เกิดจากการกลายพันธุ์ของ mtDNA สะสม การตอบสนองของโปรตีนแบบไม่พับของไมโทคอนเดรีย (UPRmt) ถูกกระตุ้นโดยความเครียดของไมโทคอนเดรียที่หลากหลาย รวมถึงความไม่สมดุลของโปรตีนระหว่างไมโทคอนเดรียและนิวเคลียส ตลอดจนการขนส่งโปรตีนของไมโทคอนเดรียที่บกพร่อง จุดเด่นของ UPRmt คือระดับการแสดงออกของโปรตีนที่เพิ่มขึ้นของ LONP1, HSP60 และ ClpP ที่น่าสังเกตคือ มีเพียงโปรตีน LONP1 เท่านั้นที่ได้รับการควบคุมโดยเฉพาะในการกระตุ้น UPRmt ชราที่เกิดจากการกลายพันธุ์ของ mtDNA ที่สะสม ซึ่งอาจเป็นตัวบ่งชี้ทางชีวภาพสําหรับความชราของลําไส้ 5. บทบาทของ NAD+ ในการชราของลําไส้ที่เกิดจากการกลายพันธุ์ของ mtDNA ที่สูงขึ้น การเติม NAD+ ในร่างกายช่วยบรรเทาฟีโนไทป์ชราของลําไส้เล็กที่เกิดจากภาระการกลายพันธุ์ของ mtDNA และช่วยประสิทธิภาพการสร้างอาณานิคมที่ลดลงในออร์กานอยด์ในลําไส้ Mut/Mut*** UPRmt ที่ขึ้นกับ NAD+ ที่เกิดจากการกลายพันธุ์ของ mtDNA ควบคุมความชราของลําไส้ ข้อมูลเหล่านี้บ่งชี้เพิ่มเติมว่าการพร่อง NAD+ ทําหน้าที่เป็นตัวกลางสําคัญของความชราของลําไส้ที่เกิดจากการกลายพันธุ์ของ mtDNA ที่สะสม 6. บทบาทของ NAD+ ในวิถีสัญญาณที่ควบคุมความชราของลําไส้ที่เกิดจากการกลายพันธุ์ของ mtDNA ที่เพิ่มขึ้น การเติม NAD+ ช่วยชีวิตการควบคุม Foxl1 และการควบคุม Notch1 ในหนู Mut/Mut*** ซึ่งบ่งชี้ว่าภาระการกลายพันธุ์ของ mtDNA สามารถควบคุมการทํางานหรือจํานวนเซลล์เฉพาะผ่านการพร่อง NAD+ นอกจากนี้ การพร่อง NAD+ ที่เกิดจากภาระการกลายพันธุ์ของ mtDNA ที่เพิ่มขึ้นทําให้เกิดการลดลงของเซลล์ลําไส้ที่เป็นบวก LGR5 ผ่านการด้อยค่าของวิถี Wnt/β-catenin 7. สรุป การเติมเต็ม NAD+ มีความสําคัญต่อการควบคุมสภาวะสมดุลของลําไส้ ซึ่งมีบทบาทสําคัญในการช่วยฟีโนไทป์การชราภาพของลําไส้ที่เกิดจากการกลายพันธุ์ของ mtDNA ที่สะสม หนังสืออ้างอิง Yang, Liang และคณะ "การกระตุ้น UPRmt ที่ขึ้นอยู่กับ NAD+ เป็นรากฐานของความชราของลําไส้ที่เกิดจากการกลายพันธุ์ของ DNA ของไมโทคอนเดรีย" การสื่อสารธรรมชาติ เล่ม 15,1 546. 16 ม.ค. 2024, doi:10.1038/s41467-024-44808-z เกี่ยวกับ BONTAC BONTAC เป็นองค์กรไฮเทคที่ก่อตั้งขึ้นในเดือนกรกฎาคม 2012 BONTAC รวมการวิจัยและพัฒนา การผลิต และการขาย ด้วยเทคโนโลยีการเร่งปฏิกิริยาของเอนไซม์เป็นหลัก และโคเอนไซม์และผลิตภัณฑ์จากธรรมชาติเป็นผลิตภัณฑ์หลัก BONTAC มีสิทธิบัตรในประเทศและต่างประเทศมากกว่า 160 รายการ เป็นผู้นําในอุตสาหกรรมโคเอนไซม์และผลิตภัณฑ์จากธรรมชาติ บอนแทคมีประสบการณ์ด้านการวิจัยและพัฒนาและเทคโนโลยีขั้นสูงในการสังเคราะห์ทางชีวภาพของ NAD และ NMN สามารถมั่นใจได้ถึงการจัดหาผลิตภัณฑ์ที่มีคุณภาพสูงและมีเสถียรภาพที่นี่ ปฏิเสธ บทความนี้อ้างอิงจากการอ้างอิงในวารสารวิชาการ ข้อมูลที่เกี่ยวข้องมีไว้เพื่อวัตถุประสงค์ในการแบ่งปันและการเรียนรู้เท่านั้น และไม่ได้แสดงถึงวัตถุประสงค์ในการให้คําแนะนําทางการแพทย์ใดๆ หากมีการละเมิดใด ๆ โปรดติดต่อผู้เขียนเพื่อลบ มุมมองที่แสดงในบทความนี้ไม่ได้แสดงถึงจุดยืนของ BONTAC

ติดต่อเรา

คุณมีคําถามใด ๆ หรือไม่? อย่าลังเลที่จะติดต่อกับ พวกเรา

การส่งข้อความของคุณ กรุณารอสักครู่